Page 60

Revista-Chilena-de-Infectologia-3-2017

Patogenia 30.- Liu Y J, Kanzler H, Soumelis V, Gilliet M. Dendritic cell lineage, plasticity and crossregulation. Nat Immunol 2001; 2 (7): 585-9. 31.- Strunk D, Egger C, Leitner G, Hanau D, Stingl G. A skin homing molecule defines the Langerhans cell progenitor in human peripheral blood. J Exp Med 1997; 185 (6): 1131-6. 32.- Ito T, Inaba M, Inaba K, Toki J, Sogo S, Iguchi T, et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol 1999; 163 (3): 1409-19. 33.- Halstead S B, O’Rourke E J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977; 146 (1): 201-17. 34.- Gordon S. The role of the macrophage in immune regulation. Res Immunol 1998; 149 (7-8): 685-8. 35.- Taweechaisupapong S, Sriurairatana S, Angsubhakorn S, Yoksan S, Bhamarapravati N. In vivo and in vitro studies on the morphological change in the monkey epidermal Langerhans cells following exposure to dengue 2 (16681) virus. Southeast Asian J Trop Med Public Health 1996; 27 (4): 664-72. 36.- Wu S J, Grouard-Vogel G, Sun W, Mascola J R, Brachtel E, Putvatana R, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000; 6 (7): 816-20. 37.- Libraty D H, Pichyangkul S, Ajariyakhajorn C, Endy T P, Ennis F A. Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol 2001; 75 (8): 3501-8. 38.- Ho L J, Wang J J, Shaio M F, Kao C L, Chang D M, Han S W, et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 2001; 166 (3): 1499-506. 39.- Sun P, Fernández S, Marovich M A, Palmer D R, Celluzzi C M, Boonnak K, et al. Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 2009; 383 (2): 207-15. 40.- Liu Y J. IPC: professional type 1 interferonproducing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275-306. 41.- Wang J P, Liu P, Latz E, Golenbock D T, Finberg R W, Libraty D H. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 2006; 177 (10): 7114- 21. 42.- Decembre E, Assil S, Hillaire M L, Dejnirattisai W, Mongkolsapaya J, Screaton GR, et al. Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PLoS 256 www.sochinf.cl Pathog 2014; 10 (10): e1004434. 43.- Pichyangkul S, Endy T P, Kalayanarooj S, Nisalak A, Yongvanitchit K, Green S, et al. A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 2003; 171 (10): 5571-8. 44.- Tsai Y T, Chang S Y, Lee C N, Kao C L. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 2009; 11 (4): 604-15. 45.- de Kruif M D, Setiati T E, Mairuhu A T, Koraka P, Aberson H A, Spek C A, et al. Differential gene expression changes in children with severe dengue virus infections. PLoS Negl Trop Dis 2008; 2 (4): e215. 46.- Torres S, Hernández J C, Giraldo D, Arboleda M, Rojas M, Smit J M, et al. Differential expression of Toll-like receptors in dendritic cells of patients with dengue during early and late acute phases of the disease. PLoS Negl Trop Dis 2012; 7 (2): e2060. 47.- Kyle J L, Beatty P R, Harris E. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 2007; 195 (12): 1808-17. 48.- Tsai T T, Chuang Y J, Lin Y S, Chang C P, Wan S W, Lin S H, et al. Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 2014; 8 (11): e3320. 49.- Nimmerjahn F, Ravetch J V. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8 (1): 34-47. 50.- Rodrigo W W, Jin X, Blackley S D, Rose R C, Schlesinger J J. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signalingincompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). J Virol 2006; 80 (20): 10128-38. 51.- Boonnak K, Slike B M, Burgess T H, Mason R M, Wu S J, Sun P, et al. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008; 82 (8): 3939-51. 52.- Boonnak K, Slike B M, Donofrio G C, Marovich M A. Human FcgammaRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. J Immunol 2013; 190 (11): 5659-65. 53.- Liu Y, Gao X, Masuda E, Redecha P B, Blank M C, Pricop L. Regulated expression of FcgammaR in human dendritic cells controls cross-presentation of antigen- antibody complexes. J Immunol 2006; 177 (12): 8440-7. 54.- Torres S, Flipse J, Upasani V C, van der Ende- Metselaar H, Urcuqui-Inchima S, Smit J M, et al. Altered immune response of immature dendritic cells following dengue virus infection in the presence of specific antibodies. J Gen Virol 2016; 97 (7): 1584-91. 55.- Palmer D R, Sun P, Celluzzi C, Bisbing J, Pang S, Sun W, et al. Differential effects of dengue virus on infected and bystander dendritic cells. J Virol 2005; 79 (4): 2432-9. 56.- Martins Sde T, Silveira G F, Alves L R, Duarte dos Santos C N, Bordignon J. Dendritic cell apoptosis and the pathogenesis of dengue. Viruses 2012; 4 (11): 2736-53. 57.- Luplertlop N, Misse D, Bray D, Deleuze V, González J P, Leardkamolkarn V, et al. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 2006; 7 (11): 1176-81. 58.- Mathew A, Kurane I, Green S, Vaughn D W, Kalayanarooj S, Suntayakorn S, et al. Impaired T cell proliferation in acute dengue infection. J Immunol 1999; 162 (9): 5609-15. 59.- Sun P, Celluzzi C M, Marovich M, Subramanian H, Eller M, Widjaja S, et al. CD40 ligand enhances dengue viral infection of dendritic cells: a possible mechanism for T cellmediated immunopathology. J Immunol 2006; 177 (9): 6497-503. 60.- Dejnirattisai W, Duangchinda T, Lin C L, Vasanawathana S, Jones M, Jacobs M, et al. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 2008; 181 (9): 5865-74. 61.- Luo D, Vasudevan S G, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015; 118: 148-58. 62.- Luo D, Xu T, Hunke C, Gruber G, Vasudevan S G, Lescar J. Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 2008; 82 (1): 173-83. 63.- Bera A K, Kuhn R J, Smith J L. Functional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease. J Biol Chem 2007; 282 (17): 12883-92. 64.- Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 2007; 282 (12): 8873-82. 65.- Muñoz-Jordan J L, Sánchez-Burgos G G, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 2003; 100 (24): 14333-8. 66.- Lim S P, Noble C G, Shi P Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015; 119: 57-67. 67.- Ashour J, Laurent-Rolle M, Shi P Y, Garcia- Sastre A. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 2009; 83 (11): 5408-18. Rev Chilena Infectol 2017; 34 (3): 249-256


Revista-Chilena-de-Infectologia-3-2017
To see the actual publication please follow the link above